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Abstract

Predicting the future behavior of tropical cyclones is a prob-
lem of great importance for the atmospheric science com-
munity with concrete applications. Researchers understand
enough about modeling storm systems to predict their track,
but forecasting their future intensity remains elusive. In the
present study, we formulate tropical storm intensification pre-
diction as a supervised data mining problem; the objective
being to produce accurate early warnings with respect to
changes in wind speed of a particular storm. We examine two
alternative approaches to discover classification rules on cur-
rent hurricane data: particle swarm optimization and class as-
sociation rules. Particle swarm optimization employs a popu-
lation based search method to optimize a rule quality function
and discover patterns in the data. Classification with associ-
ation rules finds sufficiently supported trends in the data and
transforms this knowledge into sets of rules. We examine
both approaches in detail, present our findings and discuss
their impact.

Introduction
Tropical cyclones (TCs), also known as hurricanes or ty-
phoons, even though spectacular natural phenomena, can be
extremely catastrophic and deadly (Emanuel 2003). In re-
spect to this fact, for several years researchers have been try-
ing to provide accurate early warnings based on predictions
of the behavior of TCs. The overall objective is to heighten
awareness in the communities residing along the hurricane’s
path. Additionally, accurate warnings are of great impor-
tance since the costs of an evacuation are huge, ranging
from property protection expenses (Mangalindan 1996) to
cessation in oil and gas production due to the evacuation of
drilling rigs (Considine et al. 2004).

In order to achieve precise forecasts, researchers are try-
ing to understand the behavior of tropical cyclones through-
out their duration in every possible aspect. Mainly, the field
has been divided into three distinct categories:

1. Estimating the probability of TC formation
2. Predicting storm intensity
3. Forecasting hurricane tracks
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So far, researchers are capable of forecasting the track with
90% accuracy and up to 72 hours ahead (Aberson 2001),
while intensity and formation forecasting accuracy is lag-
ging far behind.

For this reason, in this paper we are going to examine
the problem of forecasting the intensification of TCs us-
ing alternative data mining (DM) techniques. By alternative
we mean techniques other than decision trees or instance-
based learners like mining classification rules using parti-
cle swarm optimization (PSO) and association rules (AR).
These methodologies will be applied to datasets with read-
ings from hurricanes seasons between 1982 and 2003. We
have formed the prediction of the intensification as a classi-
fication problem where we are trying to predict if the hurri-
cane is going to intensify, abate, or maintain its current wind
speed based on 16 independent features. Predictions will be
made every 12 hours, for 12 hours ahead, starting at time 0
and finishing after 108 hours.

Our main objective is to produce accurate early warnings
with respect to changes in the wind speed. This is especially
practical, since the algorithms developed can be thought as a
basis for an environmental management system (EMS) that
will be capable of providing alerts when tropical storms tend
to aggravate. Also, since we are dealing with a real world
and very challenging problem, through this study we can
provide an evaluation of the performance of these recently
developed DM methodologies. Finally, the rules induced
from hurricane related measurements can provide certain in-
sight to how the hurricanes behave and help in the analytical
formulation of the intrinsic properties of TCs.

The rest of this paper is organized as follows: Section 2
provides a review of the related work on this specific prob-
lem. Sections 3 and 4 discuss how to induce classification
rules using PSO and using ARs respectively. Section 5 fo-
cuses on techniques for aiding the models at hand in order
to improve their predictions regarding the behavior of TCs.
Finally, the study ends with a comparison of the reported
techniques and some concluding remarks and future direc-
tions of research.

Related Work
The problem of predicting tropical cyclone intensification
has been investigated in both deductive and inductive ways.
From the first perspective, researchers are involved with the



derivation of analytical models to forecast the maximum
potential intensity (MPI) of hurricanes. That is the max-
imum intensity, in terms of speed, a tropical cyclone can
achieve. In Camp and Montgomery (2000), the two most
recent analytical models by Emanuel (1986-1997) and Hol-
land (1997) are compared and their shortcomings are dis-
cussed. Unfortunately, there are factors that prevent hurri-
canes from reaching their MPI. This drawback, along with
other reasons that intensity forecasting performs poorly, are
discussed in (Wang & Wu 2004). Having this in mind, more
accurate predictors should be investigated. Inductive learn-
ing and statistical inferencing are other practices to help
overcome the above problems.

The best statistically based intensity forecast model is the
one by DeMaria and Kaplan (1994; 1999). In their sta-
tistical hurricane intensity prediction scheme (SHIPS), the
problem is posed as a regression problem, where the lin-
ear least squares method is applied to certain predictor vari-
ables. Despite of the simplicity of their algorithm, most of
their work is focused on selecting appropriate predictors (i.e.
independent variables) that would achieve smaller intensity
errors. In our paper we use the same variables, which are
described in Table 1, but attack the problem as classification
using supervised learning. The limitations of classification
to provide quantitative predictions can be easily overcome
(for example by applying linear regression to the variables
of a classification rule), as it is easy to translate regression
into classification (e.g. by defining certain thresholds in the
output).

Variable Description
VMAX Current maximum wind velocity (kt)
PER The previous 12 hour change in maximum

winds (kt)
ADAY A scaled variable indicating hour far in time

from peak of season
SPDX The eastward component of the storm

movement (kt)
PSLV Vertical depth
VPER Quadratic term: V MAX × PER
POT Potential strength
SHRD The vertical shear of horizontal wind
T200 Temperature at 200 hPa surrounding the storm
EPOS A measure of how conducive the atmosphere

is to cloud formation
RHHI The relative humidity in the middle of the

atmosphere
Z850 A measure of how conducive the atmosphere

is to cloud formation
LSHR SHRD scaled by the sine of the latitude
D200 A measure of upward motion in the upper

atmosphere
VSHR Quadratic term: V MAX × SHRD

POT2 Quadratic term: POT 2

Table 1: The 16 independent variables used in our predic-
tion models.

Finally, a recent work (Tang, Yang, & Kafatos 2005) re-
sembles very much what is presented in this paper, but has
certain drawbacks. According to their approach, associa-
tion rules in the form of classification rules are developed
for predicting if a TC will intensify or not. Unfortunately,
no quantitative results are given in the form of classifica-
tion error and also no algorithm is described for the deriva-
tion of the final classifier. Their objective is more adjusted
to find interdependencies between the independent variables
and hurricane intensification and also in attribute selection
based on the theory that governs tropical storms (they use
some different variables than we do).

Swarm Intelligent Rule Discovery
In this section we explore a population-based search method
for mining classification rules from the hurricane set.

Searching for Classification Rules
In order to classify data points in the hurricane set we are
interested in discovering certain classification rules, or at-
tribute tests, that assign class labels to measurement vectors.
The idea is to recognize patterns in the data that may corre-
spond to trends in class membership. For example, we may
find that those measurements whose VMAX (current maxi-
mum wind velocity in knots) attribute lies between certain
bounds tend to belong to hurricanes that will intensify in the
future. In this case, we would like to say there is a rule
in the form of a logical implication: a ≤ VMAX ≤ b →
intensify. Correct rules may then be applied to future
measurements in order to classify novel storm data.

Classification rules have been used to predict class at-
tributes since their inception with tree induction algorithms
originally proposed by Feigenbaum and Simon (1962) as an
attempt to simulate the processes by which humans learn
concepts. Since this time they have primarily been applied
to database applications as a method of classifying new ele-
ments based on rules built from a set of training instances. In
uncomplicated datasets, relatively simple classification rules
have been shown to perform well (Holte 1993).

Part of the attractiveness of this rather high level sym-
bolic approach to concept learning is readability. A small
number of high quality rules may prove useful for examin-
ing patterns in the dataset. With such devices, we may be
able to better visualize the underlying model that produces
the data. Unfortunately, the problem of mining classification
rules from a potentially infinite domain is extremely diffi-
cult, especially in the presence of highly complex data. Tree
induction methods like ID3 and C4.5 fall short when there
may be interactions among the variables (Giuffrida, Chu,
& Hanssens 2000) and computation time may be costly for
high dimensional continuous data.

Changing perspectives slightly, we can formulate the
problem of discovering classification rules as a multivariate
nonlinear function optimization problem. Specifically, we
are interested in searching through the infinite space of pos-
sible rules, climbing an evaluation surface that corresponds
to how well each rule performs at classifying the example
data. In this way, evolutionary algorithms have been applied



to search through a rule space and realize accurate class
rules (Freitas 1998). However, encoding problems can occur
when a genetic algorithm (GA) is required to search through
a continuous space (as in the case of the hurricane set: we
want to be able to find attribute bounds over the domain of
real numbers).

PSO is a population based search inspired by the swarm-
ing behavior of insects, birds, and fish. Large populations
of such animals are able to move efficiently in aggregation
through space if each individual follows two simple rules:
fly toward food or follow a neighbor. The individuals will
wander en masse until one or more find food, after which
the entire population will eventually converge on the food.
This type of behavior is particularly attractive to computer
science researchers interested in effectively moving a popu-
lation of search points through an abstract space. Kennedy
and Eberhart (1995) developed PSO inspired by simulations
of aggregate social behaviors in the artificial life field.

Specifically, we randomly scatter the search space with
a population of individual search points. Associated with
each individual is a position vector x̃, a velocity vector ṽ,
and a fitness value f . Each individual has a “memory” in-
sofar that it stores the position with the highest fitness it has
experienced since the beginning of the algorithm, denoted
Pbst. Each member of the population is also aware of the
fittest individual in its neighborhood, Gbst (in this variant of
PSO, this neighborhood is equal to the entire population).
The algorithm consists of an iterative process in which we
continually update the positions of each particle based on
its velocity vector and the velocities of each particle based
on its Pbst value and the Gbst value such that particles tend
to steer toward the fittest particle in the population and the
fittest region of the space they have each visited so far. The
state transition equation is thus:

ṽt = χ (ṽt−1 + r1φ1 (Pbst − x̃t−1) + r2φ2 (Gbst − x̃t−1))

x̃t = x̃t−1 + ṽt

where χ is the inertial coefficient, φ1 and φ2 are acceler-
ation constants and r1, r2 ∼ U(0, 1). The inertial coeffi-
cient adjusts how reactive a particle is to velocity changes,
the acceleration constants adjust the factor by which parti-
cles tend to fly toward their Pbst and Gbst positions, and the
random variables are used to introduce stochasticity into the
transition. This stochasticity is necessary to jostle particles
out of an equilibrium that occurs at points between Pbst and
Gbst which are not necessarily optimal (Kennedy & Eber-
hart 1995).

The algorithm is run for a specified number of iterations,
or until all particles are within a hyperspheric convergence
radius of each other (Sousa, Silva, & Neves 2004). During
each update, the fitness of the particles are evaluated and
the Pbst and Gbst values are updated accordingly. When
termination occurs, the fittest particle is returned: the search
point that was found to have the highest fitness value.

An advantage PSO has over GAs is its relative finesse
with real values. For instance, in a GA, if we encode real
value arguments as a double precision floating point number
in a standard IEEE 754 mantissa exponent representation,

different changes to the bit string may result in dispropor-
tionate moves through search space depending on the sig-
nificance of the bit changed. There are ways of dealing with
this in the GA discipline (i.e. Gray codes) but PSO han-
dles real arguments more naturally by representing each ar-
gument as an orthogonal direction in search space. Particles
moving through this dimension at some velocity correspond
to proportional changes in the argument.

To apply PSO to mine classification rules in the hurricane
set we formulate the problem as a search for boundary val-
ues in each attribute test. Specifically, we want to find an
upper and lower bound for each test of attribute xi that max-
imizes some quality metric of the rule. There are several
considerations that must be taken into account discussed in
the following sub section.

Implementation of PSO for Rule Discovery
In order to develop a framework for a swarm based search
for classification rules we must take several implementation
issues into account. It is important to represent the rules and
their evaluations in a compact and cogent manner to produce
an efficient, effective algorithm. Inspiration was drawn from
Sousa et al. (2004) who experimented with PSO to mine
rules for databases in the UIUC repository.

Each rule is composed of two parts, the antecedent and
the consequent. The antecedent is a conjunction of attribute
tests m(ai, bi, xi) where xi is the tested attribute or feature,
and ai and bi are the value range boundaries for the test.
Specifically, each attribute test m(ai, bi, xi) succeeds if the
value of xi lies between ai − bi and ai + bi, otherwise the
test returns false. The particles, then, are responsible for dis-
covering good values for each ai, bi for i = 1, · · · , d where
d is the dimensionality of the data space.

A true classification rule rarely contains a test for each
attribute; we must employ a mechanism that allows the al-
gorithm to choose the omission of any given test. This is
an easy task for the GA domain: simply include an extra
bit (gene) that corresponds to whether or not the test is per-
formed (Freitas 1998). PSO, in contrast, does not allow for
such adroit bitwise manipulation. A solution (Sousa, Silva,
& Neves 2004) is to normalize the data to lie on the interval
[0, t] where t < 1 is a threshold value. During the course
of the search, when one of the test bounds drifts above this
interval, the attribute test is omitted (by always evaluating to
true). This allows for regions of the rule space in which to
explore corresponding to attribute exclusion. If the evalua-
tion of a rule tends to be higher in some such regions, the
preference will be for omitting those particular tests.

The consequent of a rule is simply a class label. For this
implementation we search for one rule per class at a time
(similar to what is termed the Michigan approach in the GA
community (Freitas 1998)). We run the search for a speci-
fied number of iterations for a rule with one particular con-
sequent, e.g., intensify. After the rule is found, we re-
move the instances of the intensify class in the data set
that were classified correctly by that rule. The process is re-
peated until less than 10% of the intensify class remains
(to avoid overfitting): each time adding the newly discovered
rule to the set of rules with that particular consequent. We



then restore the data set and repeat the entire process twice
more to find the abate, and steady rule sets.

Finally, in order to discover good rules, we must have an
accurate and efficient evaluation of rule quality. We are in-
terested in finding an evaluation that encompasses both a
high number of correctly classified instances and a low num-
ber of incorrectly classified instances. To that end we define
the rule quality function as the product of the true positive
rate and the false negative rate:

Q(X) =
TP

TP + FN
×

TN

TN + FP

Therefore, the particles swarm the rule space, optimizing
this function Q(X).

Experiments

To test the performance of the PSO algorithm for rule dis-
covery, each 12 hour hurricane data set was normalized on
[0, t] and divided into a 66% training and 34% test partitions
after randomly permuting the points to prevent temporal bias
between partitions. The PSO algorithm was then run on the
training partitions for 300 iterations per rule with the follow-
ing parameters: χ = 0.73, φ1 = φ2 = 2.05, t = 0.7. The
swarm population was set to 25.

The correctness of the discovered rules were then exam-
ined by calculating precision, recall, and accuracy on the test
partitions for each twelve hour set.

Results

The algorithm successfully found classification rules for
each 12 hour set. As shown in Figure 1 recall is extremely
high, while precision is low: indicative of rules that are not
very “discerning” and tend to over-classify for their conse-
quent class. Accuracy is shown in Figure 2 and is plagued by
low values. An interesting trend is the substantial increase
in accuracy for intensification with time and a correspond-
ing decrease for the steady class. The actual quality of the
discovered rules remained low with values ranging between
0 and 0.54.

In each case, two to three rules per class were sufficient to
cover 90% of the training set. Search time was less than an
hour per rule.

Discussion

The performance, while not impressive, holds certain
promise. In this set, the data is noisy and relatively com-
plicated so it is difficult to obtain clear rules that effectively
classify with a high accuracy. The rules that it did find
were particularly strange and plagued with abnormally high
ranges. A possible reason for this is that the particles are
allowed to wander through parts of the rule space that may
have no local improvement in quality. That is, a particular
search point may wander on a plateau for some time allow-
ing its boundary values to grow significantly large without
changing rule quality. A solution to this problem would be
perhaps to add a penalty to particles that wander too far out
of the actual ranges for the data value.
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Figure 1: Precision and recall of the rules per 12 hour set.

As a classifier, the rule set did not perform as well as
standard regression techniques such as linear and neural net-
works. The best performance of the algorithm was on the 96
hour dataset with an error of 39.93% (see Table 2). Lin-
ear and neural net regression achieved an error of 19% to
21% when predicting the sign of velocity change according
to Anderson’s work on an earlier data set with the same fea-
tures. Interestingly, on this 96 hour set the rules perform the
best while neural networks and linear regression seem to do
much better on other sets (Anderson 2004).

Future work in this area would involve applying more di-
rection to the search such as a penalty for out of range values
and a more thoroughly tested choice of parameters. Valida-
tion should be tested using k-fold cross validation.
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Figure 2: Accuracy of classification rules per 12 hour set.



Classification using Association Rules
In this section, we investigate another approach for mining
classification rules for the TC intensity prediction, which
is based on association rule (AR) discovery. Association
rules (Agrawal, Imielinski, & Swami 1993) are mainly used
for marketing purposes in order, for example, to attack the
problem of market basket analysis. In this context, they are
employed to discover associations between products with
a variety of applications like creating catalogs, promoting
sales, and arranging aisles to name a few.

Class association rules (CARs) were initiated by the work
in (Srikant & Agrawal 1996), where ARs began to be appli-
cable in both quantitative and qualitative features, something
essential for DM purposes. As a complete algorithm, they
were first introduced by Liu et al. (1998). The intuition be-
hind CARs is to keep as the consequent of the ARs the target
classes and then discover rules using the same algorithms for
AR discovery. The motivations behind implementing CARs
for this problem was that the results presented (Liu, Hsu,
& Ma 1998) seemed promising with respect to other well
known machine learning approaches. Furthermore, classifi-
cation rules are always more expressive and easier to han-
dle than decision trees and they are mined using other ac-
curacy measures (support, confidence) that can be proven to
be more effective than measures like accuracy or informa-
tion gain. Additionally, they have been recently used for the
same problem (Tang, Yang, & Kafatos 2005), but with no
report on classification error results.

The high-level description of the algorithm for mining
CARs is presented in Figure 3. First of all, the attributes are
discretized using an entropy based discretization (Fayad &
Irani 1993). Next, the apriori algorithm (Agrawal, Imielin-
ski, & Swami 1994) is applied to mine all the CARs that sat-
isfy certain user specified support and confidence levels. In
order to deal with infrequent classes that impose the danger
of getting cut-off the rule discovery due to small amount of
representation in the dataset the mechanism of multiple min-
imum supports was implemented (Liu, Ma, & Wong 2001).
Each class has a different minimum support based on the
equation: miniSup(Ci) = minSup × freqDistr(Ci)

Due to the above formula, frequent classes get higher sup-
port level than infrequent, ensuring production of rules for
infrequent classes and decrease in the production of rules for
frequent classes that could allow overfitting. As a final step,
a classifier has to be built from the CARs and a default class
must be set, since rules are neither mutually exclusive nor
exhaustive. So the algorithm for the construction of a classi-
fier should select a subset of rules, order them and assign a
default class in a way that will imply an improvement on the
classification error. Since the possible subsets of rules are
2m, where m is the number of rules, it is infeasible to find an
optimal subset. Thus, certain greedy and search approaches
have been proposed. In our case we used two of them, the
original one (Liu, Hsu, & Ma 1998), which is basically a
heuristic approach, and the one used by C4.5 (Quinlan 1993)
in order to transform a decision tree into a set of rules and is
based on a variant of simulated annealing (SA) (Kirkpatrick,
Gelatt, & Vecchi 1983).

The construction of the classifier in the greedy approach

1. trainingSet = discretize(trainSet);
3. freqs = findClassFreqs(trainSet);
2. CARs = Apriori(trainSet, freqs);
3. Classifier = buildClassifier(CARs);

Figure 3: The algorithm for mining association rules for
classification.

(CAR+G), simply sorts the rules using their confidence
level, breaking ties using their support level. After that it
starts picking rules in decreasing order of confidence and
adding them to the classifier, finding also a default class
for the current classifier. At some point the error will in-
crease, signaling the stop condition for the algorithm. The
default class of the last added rule is used. In the other ap-
proach (CAR+SA), the classifier building algorithm tries to
find subsets of rules for each class, using a variant of SA.
Rules are picked randomly and are added to the subsets if
they decrease the description length, measured in bits, of the
theory (rules) along with their exceptions. A rule that in-
creases the number of bits is added based on a probability,
calculated according to the current temperature of the SA
procedure. The above approach is based on the minimum
description length (MDL) principle (Rissanen 1983), which
states that the simplest classifier is the one that needs the
minimum number of bits in order to be transferred through a
communication channel. After the SA search is terminated,
the subsets of rules are sorted according to their false pos-
itive rate. Sorting classes by the false positive rate ensures
that earlier rules of a certain class will not misclassify to
many instances, which could be correctly classified by later
classes.

Evolving Class Association Rules
Even though entropy based discretization has proven to be of
good quality, it is possible to do better by applying certain
algorithms in the original format of the numerical attributes.
An example of an approach that could work with continu-
ous valued attributes for rule mining is DM using evolution-
ary algorithms (Freitas 1998). In this work we present two
approaches for evolving CARs, by basically mutating the
bounds of each attribute test and driving the quality of the
rules using selection in the rule population. The format of
the rules is depicted in Figure 4. For every attribute there is a
tuple, which defines (a) if the attribute test is active (A) that
is, if it is used as an attribute test of the rule (b) the lower (L)
and (c) upper (U) bounds of the attribute tests.

Figure 4: Rule format for use with the evolutionary algo-
rithm.

In the first approach the evolution starts with a randomly
generated initial rule population, in which the number of ac-
tive attribute tests is intensified between runs. This simulates



the discovery of k-ruleitems, where k equals the number of
antecedents in k runs. For every run we are trying to find
rules that satisfy the prespecified support and confidence
thresholds. These rules are kept for the later construction of
the classifier. Selection is based on the confidence level of
the rules. These rules are selected for the next generations,
while rules with 0% confidence are discarded and replaced
by new random rules. This procedure continues until a cer-
tain number of generations is reached. Intense mutation is
applied in the lower and upper bounds of the attributes. The
mutation operator randomly alters the bounds of the rules,
trying to find better quality ones.

In the second approach (CAR+SA+GA), the basic differ-
ence is the initial population used. In this case the rule pop-
ulation are the rules of the classifier built using SA. Addi-
tionally, the measure that guides the data mining procedure
and also the selection procedure is switched from support
and confidence to precision times true positive rate:

fitness =
TP

TP + FP
×

TP

TP + FN

This formula for fitness has more information than for-
mulas that simply use precision or accuracy by themselves,
since it avoids rules that overfit the data or introduce prob-
lems with unbalanced classes. Additionally, a more “intel-
ligent” mutation operator is applied, based on the following
rules:

1. If the rule is too general, i.e. covers too many instances
and a certain percentage of them leads to incorrect classi-
fication, then specialize the rule, i.e. shrink the coverage
of the rule.

2. If the rule is too specific, i.e. covers too few instances,
then generalize the rule, i.e. make the bounds of the at-
tributes more broad.
A discussion about other fitness measures, operators and

their implications can be found in (Freitas 1998).

Experiments
The performance of the above four approaches was tested
on the hurricane dataset for all the hours. The dataset was
divided into 66% for training and 34% for testing. The min-
imum support level was set at 1% and the confidence level
was set to 50%. For evolving the CARs in the randomly
generated population, 400 generations were used for each of
the 16 runs, starting and maintaining 80 rules per class in
the population. For the CAR+SA+GA approach, again 400
generations were used while the number of rules in the ini-
tial population varied according to how many rules were in
the classifier. The results are reported according to the clas-
sification error. The first evolutionary approach produced
poor results in the area of 40-55% of classification error in
all cases. The errors of the other approaches can be found in
Figure 5.

To compare the technique of classification using associ-
ation rules, we chose also two well known classifiers and
compared them with the best developed classifier from our
study, CAR+SA+GA and the one induced using PSO. The
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Figure 5: Classification error between the classification us-
ing the different association rules approaches.

other two approaches were C4.5 (Quinlan 1993) and Naı̈ve
Bayes (Duda & Hart 1973), which were applied to the
datasets using the WEKA machine learning tool (Witten &
Frank 2000). The results are reported in Table 2.

Hour C4.5 NB CAR+SA+GA PSO
12 42.51 44.27 46.23 75.64
24 42.95 44.47 45.40 59.77
36 36.49 39.92 36.23 52.42
48 38.11 34.52 35.17 64.86
60 36.22 34.18 30.44 51.86
72 31.14 30.75 27.65 43.46
84 30.54 29.67 31.40 50.00
96 32.25 34.73 31.26 39.93
108 29.72 30.27 32.50 42.46
120 28.34 32.71 30.52 40.43

Table 2: Comparison with other classifiers. Bold format
characterizes the winning approach.

Discussion
These are to our knowledge the first quantitative results for
the hurricane intensification problem when formulated as
a classification problem. From the above results, we ob-
serve that classification using association rules is indeed a
very competitive and comparable approach to other well
known techniques. Moreover, the C4.5 style classifier per-
formed extremely better than the greedy one. Even though
the greedy one is faster and deterministic in the construction
of the classifier, we believe that the additional time and the
small variance in the quality of the classifier using SA and
the MDL principle paid off by large amounts in the final re-
sults. As for the evolution of the CARs, in many cases it
boosted their performance by tweaking their bounds. It is
still an open question to us whether this tweaking is actu-
ally helping with the classifier’s error performance or just



overfits the rules based on the training set. It is perhaps the
case that with “smarter” operators better quality rules could
be found on a constant basis, but this remains to be inves-
tigated. The main issue is that it is better to have a mech-
anism for initializing the rule population with good quality
rules than random initialization when trying to evolve clas-
sification rules. Both the running time and the quality of the
rules improve greatly. This idea could also be applied to the
starting position of the particles when using PSO for rule
mining.

Aiding the Approaches
Besides having DM algorithms that process the data in a
straightforward way, one can preprocess and postprocess the
datasets and the derived classifiers by using, for example,
feature selection and combining models respectively.

Feature Selection
We used several different feature selection algorithms from
the WEKA tool and then applied the selected features to
the classifiers. Both ranking (ReliefF, PCA, Information
Gain, Gain Ratio) and filtering approaches (Best First, Ge-
netic Search) were tried. In the first approach the attributes
are ranked according to a criterion and the user can select
among them in this order. In the second approach the al-
gorithms search for a subset of features that minimize the
classification error. Unfortunately, the results were not that
promising. In most cases we had an improvement of less
than 5% in classification error, but in other cases the per-
formance decreased, another indication that the datasets at
hand are indeed resistant to pattern discovery. The main
problem is that the dataset is already preprocessed to con-
tain variables that improve the error when using regression.
Also the information gain criterion discovered that the at-
tributes are not very informative (the best attributes had an
information gain of 0.2-0.3 bits and the worst less than 0.01
bits). That explains the large classification error of CARs
and C4.5 that have as a main component information gain
for discretization and tree building respectively. Table 3 has
the results from the previously mentioned approaches, when
the 10 best attributes were selected using the ReliefF algo-
rithm. They are compared against the previously best (PB)
classification error from Table 2.

Combining Models
DM models are procedures driven by a bias in the form of
what someone is trying to discover. So different models can
result in differences in how they classify future data, even
though the same training set is used. It is often the case that
the coalition of models provides better classifiers by min-
imizing their disadvantages. Having this in mind several
schemes like boosting, voting, and bagging have been de-
veloped for this purpose (see (Witten & Frank 2000) for an
overview).

In relation to our case, it is very easy to aggregate the
two classifiers (CARs and PSO rules) using a method that
was developed in order to help CARs using other tech-
niques (Liu, Ma, & Wong 2001). Basically, the algorithm

Hour PB CAR+SA C4.5 NB LB
12 42.51 48.19 40.55 44.27 36.11
24 42.95 45.16 42.60 42.72 37.82
36 36.23 36.36 38.47 41.50 37.28
48 34.52 35.27 37.51 32.73 31.53
60 30.44 30.10 34.52 33.50 29.51
72 27.65 25.33 28.82 28.62 26.88
84 29.67 31.20 30.10 30.10 26.15
96 31.26 30.76 28.53 35.73 30.27
108 29.72 31.11 25.00 30.55 25.27
120 28.34 28.34 27.72 33.95 26.16

Table 3: Comparison of several classifiers using feature se-
lection with the Logit Boost algorithm.

has a main classifier and other back up classifiers and tries
to evaluate the error performance of the rules in the main
classifier with respect to the other classifiers. If their per-
formance is less efficient the primary rules are replaced by
the best back up classifier for this specific rule. Since the
PSO classifier was weak in predictive accuracy, we used the
WEKA package to implement such a cooperation as an ex-
ample of further experimentation. Additive logistic regres-
sion (Friedman, Hastie, & Tibshirani 1998) (Logit Boost in
WEKA - LB) was used (without feature selection), having
as unit classifiers decision stumps. The results can be found
in Table 3. In most of the cases, boosting has given the best
performance, even when attribute selection was used for the
other classifiers, indicating the power of combining models.

Conclusion
In general the overall project was very interesting and helped
us obtain a deeper understanding of supervised learning al-
gorithms for classification. Moreover, we were introduced
to several techniques of machine learning such as particle
swarm optimization, association rules, entropy based pre-
processing techniques, feature selection methodologies and
classifier combination schemes.

As far as the TC intensification problem is concerned, we
confirmed previously derived results in the research commu-
nity that, though a problem of essential value, it is very hard.
It was previously attacked as a regression problem or with
analytical formulations. This is a new approach that tries to
facilitate the solution but encounters the bottlenecks of the
previous approaches as well. Among the difficulties is that
the classes vary greatly in representation between datasets
and within the same dataset; it is often the case that clas-
sifiers will find more accurate rules in the most frequent
classes since the exemplars can provide more information
regarding these classes. Also, such rules could dominate
those for the infrequent classes. It is possible that these par-
ticular variables cannot represent the state of the hurricane
completely and that temporal information could help capture
the dynamics of hurricanes.

Overall, the two approaches differ very much with PSO
having more degrees of freedom in the search, while CAR
performs a more exhaustive search based on certain criteria.



So it is often the case that CAR would find better quality
rules, which is reflected in the results reported.

The major shortcoming of the rules found by PSO is that
they are not very discerning. The search points need to be
more constrained: there seems to be a lack of gradient in-
formation in large parts of the space where points are forced
to wander on plateaus without making improving moves and
producing uselessly large values.

For future work, we would like to investigate importing
temporal information in the derived models. Also it would
be interesting to compare the derived classification rules
with the existing MPI models. It would also be interesting to
incorporate more attributes like the ones described in (Tang,
Yang, & Kafatos 2005) and let the DM algorithms find more
interesting patterns with a bigger collection of features at
their disposal.
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